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Small Resolutions and Non-Liftable Calabi-YauthreefoldsS. Cynk D. van StratenApril 9, 2008Abstra
tWe use properties of small resolutions of the ordinary double point indimension three to 
onstru
t smooth non-liftable Calabi-Yau threefolds.In parti
ular, we 
onstru
t a smooth proje
tive Calabi-Yau threefold over
F3 that does not lift to 
hara
teristi
 zero and a smooth proje
tive Calabi-Yau threefold over F5 having an obstru
ted deformation. We also 
onstru
tmany examples of smooth Calabi-Yau algebrai
 spa
es over Fp that do notlift to algebrai
 spa
es in 
hara
teristi
 zero.1 Introdu
tionM. Hirokado ([14℄) and S. S
hröer ([21℄) have 
onstru
ted examples of proje
-tive Calabi-Yau threefolds in 
hara
teristi
 2 and 3 that have no liftings to
hara
teristi
 zero. The question arises if there exist non-liftable examples inhigher 
hara
teristi
, [11℄, [9℄. In this paper we 
onstru
t further examples ofnon-liftable Calabi-Yau threefolds, most notably a rigid Calabi-Yau threefold in
hara
teristi
 3 and a proje
tive Calabi-Yau threefold in 
hara
teristi
 5 withan obstru
ted deformation. Using our method, it is easy to produ
e non-liftableCalabi-Yau threefolds in higher 
hara
teristi
 in the 
ategory of algebrai
 spa
es.Up to now, we were unable to �nd further proje
tive examples.Our method exploits a remarkable feature of birational geometry in dimension

≥ 3, namely the appearan
e of singularities that have a small resolution, thatis, admit a map π : Y −→ X su
h that the ex
eptional set has 
odimension ≥ 2in Y . The key example of the ordinary double point in dimension three wasdes
ribed by Atiyah [2℄. It admits two di�erent small resolutions that 
ontra
ta single rational 
urve with normal bundle O(−1) ⊕ O(−1). Su
h a rational
urve is a stable submanifold in the sense that it lifts to any deformation ofthe ambient variety, [18℄. As a 
onsequen
e, blowing down deformations ofsu
h small resolutions give deformations of the variety whi
h remain singular,[10℄. This is very di�erent form the geometry related to the ordinary doublepoint in dimension two. We use this pe
uliar property of the three dimensionalordinary double point to give a 
riterion for varieties in 
hara
teristi
 p to haveno lifting to 
hara
teristi
 zero. The 
riterion 
an be applied to 
ertain rigidCalabi-Yau threefolds that 
an be obtained as resolution of a double 
over of
P3, rami�ed over a redu
ible hypersurfa
e of degree eight and �bre produ
ts ofrational ellipti
 surfa
es. 1
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2 Generalities on LiftingsConsider a s
heme f : X −→ T �at over T and assume T →֒ S embeds T as a
losed subs
heme in S. By a lifting of X to S we mean a s
heme F : X −→ S�at over S, su
h that X = X ×S T . We are mainly interested in the 
ase
T = Spec(k), where k is a �eld of 
hara
teristi
 p > 0 and S is artinian lo
alring with k as residue �eld. Su
h liftings are usually 
onstru
ted by a stepwisepro
ess from situations where T ⊂ S is de�ned by an ideal I of square zero,whi
h will be assumed from now on. One 
ould in fa
t redu
e to the 
ase where
T →֒ S is a simple extension, that is, if S is de�ned by an ideal I that isannihilated by the maximal ideal of S.The liftings of f : X −→ T to S form a 
ategory (in fa
t a groupoid) wheremorphisms between two liftings are de�ned to be an isomorphism over S, whi
hrestri
ts to the identity over T .If f : X −→ T is smooth, then liftings always exist lo
ally; the lo
al lifts of
U ⊂ X form a torsor over ΘU/T := HomU (ΩU/T ,OU ). There is an obstru
tionelement Ob(X/T, S) ∈ H2(X,ΘX/T ⊗ f∗I) that vanishes pre
isely when f :
X −→ T lifts to S. If Ob(X/T, S) = 0, then the set of isomorphism 
lasses ofliftings of X −→ T is a torsor over H1(X,ΘX/T ⊗ f∗I). The standard referen
efor this material is [12℄ or Exposé III in SGA1, [13℄.In the more general 
ase where f : X −→ T is not ne
essarily smooth, onehas to use the theory of the 
otangent 
omplex ·

X/T , the derived version of
ΩX/T ,[16℄. For an OX-module F we put Ti(X/T,F) := ExtiX(·X/T ,F) =

Hi(HomX(·X/T ,F)). Then one has the following fundamental fa
t:Theorem 2.1 ([17℄, Theorem 5.31) Let T →֒ S be de�ned by an ideal I ofsquare zero and f : X −→ T a �at s
heme over T . Then there is an obstru
tion
Ob(X/T, S) ∈ T2(X/T, f∗I)It is zero pre
isely if f : X −→ T 
an be lifted to S. If Ob(X/T, S) = 0, thenthe set of liftings of f : X −→ T is a torsor over T1(X/T, f∗I). The group ofautomorphisms of any lifting is isomorphi
 to T0(X/T, f∗I).We refer to [16℄, III 2 for details. Note that in the 
ase of a simple exten-sion the relevant groups are isomorphi
 to Ti(X/T ) (i = 0, 1, 2), where we put

Ti(X/T ) := Ti(X/T,OX).3 Blowing down LiftingsThe phenomenon of simultaneous resolution was �rst observed for the simplesingularities by Brieskorn [4℄. An important feature of the situation is that undermild 
ohomologi
al 
onditions deformations or liftings 
an be �blown-down�. Weformulate and sket
h a proof of a variant of a theorem formulated in [24℄.Theorem 3.1 Let π : Y −→ X be a morphisms of s
hemes over k and let
S = Spec(A), A artinian with residue �eld k. Assume that OX = π∗(OY ) and2



R1π∗(OY ) = 0. Then for every lifting Y −→ S of Y there exists a preferredlifting X −→ S making a 
ommutative diagram
Y →֒ Y
↓ ↓
X →֒ Xproof: A lifting of X over S is de�ned by giving for ea
h a�ne open subset

U ⊂ X a �at OS-algebra, redu
ing to OU over k. These algebras should be
ompatible in the sense that isomorphisms are given for the restri
tions to over-laps, whi
h satisfy a 
o
y
le 
ondition. Let V := π−1(U) ⊂ Y . If a lifting
Y −→ S is given, we obtain an OS-algebra A(U) := H0(V,OY ).The vanishing of R1π∗(OY ) implies that H1(V,OY ) = 0. By redu
ing to the
ase of a simple extension and using the long exa
t 
ohomology sequen
e, onesees that this implies that A(U) is OS-�at, whereas π∗(OY ) = OX shows that
Spec(A(U)) indeed is a lift of U over S. The 
ompatibilities for gluing areimplied by the 
orresponding properties for Y. QEDNext we want to 
ompare the groups Ti(Y/T ) and Ti(X/T ). Re
all that theseare hyper
ohomology groups of the 
otangent 
omplex, whi
h 
an be 
al
ulatedusing a lo
al-to-global spe
tral sequen
e that reads

Ei,j
2

= H i(X,T j
X/T ) =⇒ Ti+j(X/T )Here T j

X/T are the 
ohomology sheaves of the 
otangent 
omplex, so T 0
X/T =

ΘX/T . The sheaf T 1

X/T determines the lo
al in�nitesimal deformations and T 2

X/Tthe lo
al obstru
tions.Proposition 3.2 Let π : Y −→ X be a morphism of s
hemes over T .If ΘX/T = π∗(ΘY/T ) and R1π∗(ΘY/T ) = 0 then there is an inje
tion
T1(Y/T ) →֒ T1(X/T )proof: From the Leray spe
tral sequen
e

Eij
2

= H i(X,Rjπ∗(ΘY/T )) =⇒ H i+j(Y,ΘY/T )one obtains an isomorphism H0(Y,ΘY/T ) ≃ H0(X,π∗(ΘY/T )) and an exa
tsequen
e
0 −→ H1(X,π∗(ΘY/T )) −→ H1(Y,ΘY/T ) −→ H0(X,R1π∗(ΘY/T )) −→ . . .As by assumption ΘX/T = π∗(ΘY/T ) and R1π∗(ΘY/T ) = 0, we obtain an iso-morphism

H1(X,ΘX/T ) ≃ H1(Y,ΘY/T )From the lo
al-to-global spe
tral sequen
e of deformations one obtains
0 −→ H1(X,ΘX/T ) −→ T1(X) −→ H0(X,T 1

X/T ) −→ . . .and hen
e T1(Y/T ) = H1(Y,ΘY/T ) = H1(X,ΘX/T ) inje
ts into T1(X/T ).QED3



Corollary 3.3 Let π : Y −→ X be a morphism of s
hemes over T . Assumethat:1) π∗(OY ) = OY and R1π∗(OY ) = 0.2) ΘX/T = π∗(ΘY/T ) and R1π∗(ΘY/T ) = 0.Then there is at most one lifting Y −→ S of Y whi
h lies over a given lifting
X −→ S of X.proof: One redu
es to the 
ase of simple extensions. As the set of liftings forma torsor over T1, it is su�
ient to show that there is an inje
tion T1(Y/T ) →֒
T1(X/T ), whi
h is the 
ontent of the previous proposition. QEDRemark 3.4 1) It seems that in the above 
orollary the �rst 
ondition is im-plied by the se
ond.2) If ΘX/T = π∗(ΘY/T ) and Riπ∗(ΘY/T ) = 0 for i = 1, 2 then one 
an 
ombinethe Leray spe
tral sequen
e for π : Y −→ X and the lo
al-to-global spe
tralsequen
es of deformations into a diagram
0 −→ H1(ΘY/T )

≃−→ T1(Y/T ) −→ 0 −→ H2(ΘY/T )
≃−→ T2(Y/T ) −→ 0

≃↓ ↓ ≃↓ ↓
0 −→ H1(ΘX/T ) −→ T1(X/T ) −→ H0(T 1

X/T ) −→ H2(ΘX/T ) −→ T2(X/T ) −→ . . .whi
h leads to an exa
t sequen
e
0 −→ T1(Y/T ) −→ T1(X/T ) −→ H0(T 1

X/T ) −→ T2(Y/T ) −→ T2(X/T ) −→ . . .If in addition T 2
X/T = 0, then . . . 
an be repla
ed by 0.4 Liftings of Small ResolutionsBy a small resolution of a s
heme X we mean a smooth modi�
ation π : Y −→ Xwith the property that the ex
eptional set has 
odimension ≥ 2 in Y . Onlyvery spe
ial singularities do admit a small resolution and in this se
tion we
on
entrate on the ordinary double point.Let us study �rst the lo
al situation. We put X := Spec(R), where R :=

k[[x, y, z, t]]/(f), where f = xy − zt. Let Z ⊂ X be the 
losed subs
hemede�ned by the ideal (x, z) ⊂ R and let Y := BZ(X) be the blow-up of X in Z.
Y is des
ribed as sub-s
heme of Spec(k[[x, y, z, t]]) × P1 by the equations

xy − zt = 0, xu − zv = 0, (u : v) ∈ P1The ex
eptional lo
us is a 
opy of P1, with normal bundle O(−1) ⊕O(−1). In[10℄ one �nds the following basi
 
al
ulation.Theorem 4.1 (Friedmann) Let π : Y −→ X be a small resolution of the nodein dimension three. Then:1) OX = π∗(OY ) and Riπ∗(OY ) = 0 for i ≥ 1.2) ΘX/k = π∗(ΘY/k) and Riπ∗(ΘY/k) = 0 for i ≥ 1.4



From this, one dedu
es H1(ΘY/k) = H2(ΘY/k) = 0. This implies that Y liftsover any S and does so in a unique manner. Expli
itly one 
an 
onstru
t thislifting of Y over S as follows. We put
X = Spec(R), R := OS [[x, y, z, t]]/(xy − zt)and let

Y = BZ(X ), Z = V (x, z) ⊂ XNote that
T1(X/k) = H0(X,T 1

X/k) = k[[x, y, z, t]]/(Jf , f) = k[[x, y, z, t]]/(x, y, z, t) = kso the lifting of X is not unique, rather there is a one-dimensional spa
e of
hoi
es.The lifting of X over whi
h there also is a lifting of Y 
an be 
hara
terized byhaving a singular se
tion σ : S −→ X indu
ed by the 
anoni
al proje
tion
R −→ OS , x, y, z, t 7→ 0This is to be 
ontrasted with the lifting of X to

X = Spec(R), R = OS [[x, y, z, t]]/(xy − zt − q)where OS/(q) = k. As a result of this lo
al analysis one �nds the followingProposition 4.2 Let X be a s
heme having Σ ⊂ X as set of nodes and let
π : Y −→ X be a small resolution. Let Y be any lift of Y over S and let X bethe blow down of Y. Then for ea
h x ∈ Σ there is a singular se
tion σ : S −→ Xpassing through x.As a 
orollary we obtain the following theorem that forms the basis for our
onstru
tion of non-liftable Calabi-Yau spa
es. Re
all that X/k is 
alled rigidif T1(X/k) = 0.Theorem 4.3 Let X be a s
heme over S = Spec(A), A a 
omplete domainwith residue �eld k and fra
tion �eld K = Q(A). Assume that:1) The generi
 �bre Xη := X ⊗A K is smooth.2) The spe
ial �bre X := X ⊗A k is rigid with nodes as singularities.Let π : Y −→ X be a small resolution. Then Y does not lift to S.proof: Let An := A/mn+1 and put Sn := Spec(An), Xn := X ×S Sn −→ Sn,so that X = X0. Assume that Y has a lift Y over S. From it we get a lift
Yn := Y ×S Sn of Y . Then the blow-down of Yn −→ Sn is a lift of X, whi
h bythe previous theorem 
omes with singular se
tions through the singularities. As
X is rigid, the lifting is unique, hen
e must be isomorphi
 to the given lifting
Xn −→ Sn. Hen
e, for all n the morphism Xn −→ Sn has a singular se
tion.This 
ontradi
ts the smoothness of the generi
 �bre of X −→ S. Hen
e Y 
annot lift over S. QED5



Corollary 4.4 Under the above assumptions, if A = Zp, then Y has no lift to
hara
teristi
 zero.proof: Let Y −→ S is a lift of Y , where S is a 
omplete DVR whi
h is a�nite extension of Zp. We get by blowing down a family X ′ −→ S and a map
Y −→ X ′ over S. Pulling ba
k the given family X −→ Spec(Zp) via the �nitemap Spec(S) −→ Spec(Zp) we get a family X ′′ −→ S. By rigidity of X thelifting is unique and we 
on
lude that X ′ and X ′′ are isomorphi
 over S. Wenow get a 
ontradi
tion to previous theorem 4.3. QEDRemark 4.5 The theorem 
an be understood in terms of Ti as follows. As Xis assumed to have only nodes as singularities, one has T 2

X/k = 0 and we havean exa
t sequen
e
0 −→ T1(Y/k) −→ T1(X/k) −→ H0(X,T 1

X/k) −→ T2(Y/k) −→ T2(X/k) −→ 0If furthermore X/k is rigid, we see that Y/k is rigid as well. The sheaf T 1

X/kis supported on the singularities and ea
h node 
ontributes a 
opy of k to
H0(X,T 1

X/k). Any lifting of X that is �smoothing out� a node will produ
ea non-zero element of H0(X,T 1

X/k), whi
h in turn gives a non-zero element in
T2(Y/k), namely the obstru
tion to lift Y over that lifting of X. That obstru
-tion element maps to zero in T2(X/k), as it should.5 Proje
tive examplesWe give some examples where the ideas of the previous se
tions 
an be applied.5.1 A proje
tive Calabi-Yau threefold over F3 with no lifting.Let D ⊂ P3 be the arrangement of eight planes given by the following equation

(x − t)(x + t)(y − t)(y + t)(z − t)(z + t)(x + y + z − t)(x + y + z − 3t) = 0.This is the arrangement no 86a from the paper [6℄, it 
onsist of six planes ofa 
ube and two additional planes: one 
ontains three verti
es of the 
ube butno edges, the other 
ontains exa
tly one vertex of the 
ube and is parallel tothe �rst one. In fa
t there are two 
hoi
es for the se
ond plane and we make aspe
i�
 
hoi
e, as suggested in the pi
ture.The double 
over of P3 bran
hed along this o
ti
 surfa
e has a model X over
Z, whose generi
 �bre Xη is a rigid Calabi�Yau manifold with the topologi
alEuler 
hara
teristi
 e(Xη) = 80 and the Hodge numbers

h11 = 40, h12 = 0The redu
tion X3 of X modulo 3 turn out to be singular. To �nd the singu-larities of X3 we have to 
ompare the singularities of the arrangement D andits redu
tion D3 modulo 3. The only singularities of D are 28 double lines and6
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Figure 1:10 fourfold points (of type p0
4 in the notations introdu
ed in [6℄), the redu
-tion D3 has one additional fourfold point, as in 
hara
teristi
 3 the plane

x+ y + z− 3t = 0 
ontains the two verti
es (1, 1, 1, 1) and (−1,−1,−1, 1) of the
ube.To study the resulting singularities, we have to study the resolution pro
ess ofthe double 
over. The general strategy is to blow up in P3 to make the stri
ttransform of the divisor D non-singular. This 
an be done by �rst blowing�upthe 10 fourfold points and then sequentially the double lines. In 
hara
teristi
 3
D has an extra fourfold point, but we still blow�up �rst the ten fourfold pointsand then the double lines. At the eleventh fourfold point, after blowing�upthe �rst double line through it, the stri
t transforms of the two planes that donot 
ontain that line interse
t along a 
ross (two interse
ting lines). When weblow�up the 
ross we end up with a threefold with one node and a sum of eightsmooth, pair�wise disjoint surfa
es whi
h do not 
ontain the node.In lo
al 
oordinates we 
an assume that the four planes we are 
onsidering haveequations x = 0, y = 0, z = 0, x + y + z − 3 = 0. In 
hara
teristi
 zero weblow�up the double lines. Let us �rst blow-up the two disjoint lines x = y = 0and z = x + y + z − 3 = 0. In one of the a�ne 
harts the blow�up of P3 isgiven by the equation (v − 1)z = x(y + 1) − 3. The threefold is smooth butin 
hara
teristi
 3 it a
quires a node at x = 0, y = −1, z = 0, v = 1. Sin
ethe surfa
e x = 0, z = 0 is a Weil divisor on the threefold whi
h is not Cartier(it is a 
omponent of the ex
eptional lo
us of the blow�up) the node admits aproje
tive small resolution.The double 
over of the threefold bran
hed along the sum of surfa
es, is theredu
tion X3 of X modulo 3. It has two nodes, whi
h form the preimage of thedouble point under the double 
over. There exists a proje
tive small resolution
X3 of the nodes whi
h is a smooth rigid Calabi�Yau manifold in 
hara
teristi
7



3. The proje
tive small resolution 
an be obtained dire
tly from the redu
tion
D3 of the arrangement D modulo 3 by blowing�up �rst all eleven fourfold pointsand then the double lines.Using the formulas from [6, 7℄ we 
an 
ompute the Hodge numbers h11 = 42,
h12 = 0, so indeed Y3 is also rigid. As the nodal X3 is the redu
tion of X withsmooth general �bre Xη, we 
an apply the theorem of the previous se
tion to
on
lude that Y3 
an not be lifted to 
hara
teristi
 zero. A lo
al analysis learnsthat the nodes of X3 are lifted to

(Z/9)[[x, y, z, t]]/(xy − zt − 3),whi
h shows that Y3 does not lift to Spec(Z/9Z), that is, Y3 has no lifting atall.5.2 A Calabi-Yau threefold over F5 with an obstru
ted defor-mation.Consider the o
ti
 arrangement D ⊂ P3 of eight planes given by (see �g. 2)
(x− t)(x + t)(y − t)(y + t)(z − t)(z + t)(x + y + Az −At)(x−By −Bz + t) = 0.
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Figure 2:For general A and B the arrangement has seven fourfold points (of type p0
4),namely the three in�nite points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and four of theverti
es of the 
ube, namely (1,−1, 1, 1), (−1,−1, 1, 1) 
ontained in the plane

(x + y + Az − At) = 0 and (−1, 1, 1, 1), (−1, 1,−1, 1) 
ontained in the plane
(x − By − Bz + t) = 0.If there is a spe
ial relation between the parameters A and B, the line of in-terse
tion of these two planes interse
t an edge of the 
ube, giving rise to an8



arrangement with eight fourfold point. For example, the two planes meet on theedge y+t = z+t = 0 pre
isely when A+B = −1 and on the edge x−t = y−t = 0pre
isely when AB = A + B. In that 
ase the resolution of the double 
overbran
hed along D de�nes a smooth Calabi-Yau manifold with e = 72

h11 = 37, h12 = 1as 
an be 
omputed using [7℄. Indeed, moving this extra fourfold point alongthe edge of the 
ube produ
es an equisingular deformation of the arrangementand leads to a one-parameter family of su
h Calabi-Yau threefolds.If both 
onditions
A + B = −1, AB = A + Bare satis�ed, then A and B are roots of the equation

x2 + x − 1 = 0and the arrangement has nine fourfold points. Hen
e su
h an arrangement withnine fourfold points de�nes a Calabi-Yau spa
e �at over
Z[x]/(x2 + x − 1)The generi
 �bre is a proje
tive Calabi-Yau threefold with
h11 = 38, h12 = 0Now look at the redu
tion D5 of D modulo 5. Using [7℄ one 
omputes that oneobtains again a smooth Calabi-Yau manifold Y5, now with

h11(X) = 39, h12(X) = 1The remarkable thing that happens is
x2 + x − 1 = (x − 2)2 mod 5so that

Z[x]/(x2 + x − 1) ⊗ F5 = F5[ǫ], ǫ
2 = 0As a

ording to [7℄ the in�nitesimal deformations of Y5 are given by equisingularin�nitesimal deformations of D5. As the only solution to x2 + x − 1 in F5 is2, in the ring of dual number F5[ǫ], (ǫ2 = 0), it has also the solution 2 + ǫ,whi
h means that the in�nitesimal equisingular deformations of D5 (and hen
ealso in�nitesimal deformations of X) are given by arrangement Dǫ given by thefollowing equation

(x − t)(x + t)(y − t)(y + t)(z − t)(z + t) ·
(x + y + (2 + ǫ)z − (2 + ǫ)t) (x + (3 + ǫ)y + (3 + ǫ)z + t) = 0.This �rst order deformation 
annot be lifted to a se
ond order deformation (andhen
e also to a family) sin
e 2 is the only solution of x2+x−1 = 0 in the �elds F5and F̄5, whereas in the rings F5[ǫ]/ǫ

3 and F̄5[ǫ]/ǫ
3 its solutions are 2+ c · ǫ2 (andsimilar for higher orders). The smooth Calabi�Yau manifold X has obstru
teddeformations over F5 and F̄5.Similarly one 
an show that Y5 has no lifting to Z/25Z.9



6 Non-proje
tive ExamplesIt is rather easy to produ
e examples of rigid Calabi-Yau spa
es X over Zwhose redu
tion X = X mod p aquires some extra nodes. However, in many
ases there does not exist a small resolution π : Y −→ X in the 
ategrory ofs
hemes. However, in the larger 
ategory of algebrai
 spa
es Artin [1℄ has shownthat small resolutions do exist. The arguments in the derivation of theorem 4.3were of very general nature and 
arry over verbatim to the more general 
ontextof algebrai
 spa
es.6.1 A Calabi-Yau spa
e over F5 having no lift.Consider the arrangement D ⊂ P3 given by the following equation
(

x3 + y3 + z3 + t3 − (x + y + z + t3)
)

(x+y)(y+z)(z+t)(x+y+z)(y+z+t) = 0.In P4 this o
ti
 surfa
e 
an be des
ribe by two symmetri
 equations
(x3 + y3 + z3 + t3 + u3)(x + y)(y + z)(z + t)(t + u)(u + x) = 0

x + y + z + t + u = 0It 
onsists of the Clebs
h diagonal 
ubi
 (see �g. 3)
x3 + y3 + z3 + t3 − (x + y + z + t)3 = 0

Figure 3:and �ve planes tangent at points where three lines lying on the 
ubi
 meet,these points are 
alled E
kardt points. A smooth 
ubi
 in P3 has at most10 E
kardt points, the diagonal Clebs
h 
ubi
 is the only 
ubi
 in P3 that hasexa
tly ten E
kardt points. One of them is the point (1,−1, 0, 0), and the other
an be obtained by permutation of 
oordinates (in P4). Every E
kardt point is
ontained in three line lying on the surfa
e, on any of this lines there is another10



E
kardt point. We 
hoose �ve E
kardt points and �ve line lying on the 
ubi
su
h that the lines form a pentagon with verti
es at the �xed E
kardt points.The singularities of the surfa
e D 
onsists of ten fourfold points, ten double and�ve triple lines. The fourfold points fall into two groups
A1 = (1,−1, 0, 0) B1 = (1,−1, 1,−1)
A2 = (0, 1,−1, 0) B2 = (0, 1,−1, 1)
A3 = (0, 0, 1,−1) B3 = (−1, 0, 1,−1
A4 = (0, 0, 0, 1) B4 = (1,−1, 0, 1)
A5 = (1, 0, 0, 0) B5 = (−1, 1,−1, 0)The triple lines are

l1 : x + y = z + t = 0
l2 : x + y = z = 0
l3 : y + z = x = 0
l4 : y + z = t = 0
l5 : z + t = y = 0.The double lines also fall into two groups

m1 : x + y = t = 0 n1 : x + y = y + z = 0
m2 : y + z = x + t = 0 n2 : x + y = y + z + t = 0
m3 : z + t = x = 0 n3 : y + z = z + t = 0
m4 : x + z = y = 0 n4 : z + t = x + y + z = 0
m5 : y + t = z = 0 n5 : x + y + z = y + z + t = 0The following tables des
ribe in
iden
es of points and linesline 
ontains points point lies on lines

l1 A1, A3, B2 A1 l1, l2,m1, n4

l2 A1, A4, B1 A2 l3, l4,m2, n5

l3 A2, A4, B2 A3 l1, l5,m3, n2

l4 A2, A5, B5 A4 l2, l3,m4, n1

l5 A3, A5B3 A5 l4, l5,m5, n3

m1 A1, B5 B1 l1,m2, n1, n5

m2 A2, B1 B2 l2,m3, n3, n4

m3 A3, B2 B3 l3,m4, n4, n5

m4 A4, B3 B4 l4,m5, n2, n5

m5 A5, B4 B5 l5,m1, n1, n2

n1 A4, B1, B5

n2 A3, B4, B5

n3 A5, B1, B2

n4 A1, B2, B2

n5 A2, B3, B4Consider the double 
overing of P3 bran
hed along D. We shall show it has amodel X over Z, whose generi
 �bre Xη is a Calabi�Yau manifold. Although
D is not an o
ti
 arrangement in the sense of [6℄, the singularities are 
an beresolved in a similar manner. First we blow�up the fourfold points Ai and Bi.11



The lines interse
ting at points Bi's are now disjoint. Sin
e at the points Ai'sone of the planes was threefold tangent to the 
ubi
, after blowing up that pointthe stri
t transform of the 
ubi
 and the tangent plane are still tangent along aline. This line interse
ts the other two planes that 
ontained the fourfold point.We have to blow�up the line, then the stri
t transforms are transversal so wehave to blow�up a line again.After this we end up with 10 double and 5 triple lines, these lines are pairwisedisjoint. We blow�up them all, sin
e we add the ex
eptional divisors 
orre-sponding to the triple lines to the bran
h lo
us, we get 15 additional doublelines whi
h we have to blow�up again.Now, we shall 
ompute the Euler 
hara
teristi
 of the resulting Calabi�Yaumanifolds, sin
e we blow�up P3 ten times at a point and at 40 times at aline � for every point Ai we blow�up twi
e at the interse
tion of the stri
ttransform of 
ubi
 at tangent plane, there are 10 double and 5 triple lines, butevery triple lines is resolved by blowing�up four times at a line). Consequently
e(P̃3) = 4 + 10 · 2 + 40 · 2 = 104.The �nal bran
h lo
us is a blow�up of a sum of a 
ubi
, �ve planes and �veprodu
ts P1 × P1. During blow�up of every fourfold point we blow�up a 
ubi
and three planes, moreover blowing�up every line of interse
tion of a stri
ttransform of the 
ubi
 and tangent plane we blow�up two planes. So we get
e(D∗) = 9 + 5 · 3 + 5 · 2 · 2 + 10 · 4 + 10 · 2 = 104.The Calabi�Yau manifold X is rigid, sin
e the resolution of the singularities wasobtained by blowing�up points and lines, using [7℄, it is enough to show, thatevery equisingular deformation of D is trivial. Observe that the points Bi lines
Li,mi, ni are all determined by the points Ai. Indeed interse
tion of the plane
ontaining three 
onse
utive verti
es of the pentagon formed by points Ai withthe line 
ontaining the other two verti
es gives one of the points Bi, so we 
andetermine all the fourfold points, then also the lines are determined. Sin
e allthe 
hoi
es all �ve points in general position in P3 are proje
tively equivalent,it is enough to 
he
k with a 
omputer algebra program that there exists exa
tlyone 
ubi
 surfa
e whi
h 
ontains all the lines.So we have e(X) = 104, h11 = 52, h12 = 0. Sin
e during the resolution we blow�up P3 �fty times, the rank of the subgroup of the Pi
ard group that is invariantw.r.t the involution is 51. We 
an use the standard method of 
ounting pointsmodulo small primes to show that the Calabi�Yau manifold X is modular, andthe 
orresponding modular form has level 720. If we multiply the equation ofthe bran
h lo
us by 3, then we get a rigid Calabi�Yau manifold with the sameHodge numbers and L�series of level �ve, exa
tly the same as the S
hoen selfprodu
t of semistable ellipti
 �brations 
orresponding to Γ0

0(5).The relation to prime 5 is not surprising, as the Clebs
h 
ubi
 is known tobe a model of the Hilbert modular surfa
e for Q(
√

5), [15℄. The redu
tion ofClebs
h 
ubi
 modulo 5 has a node at the point (1, 1, 1, 1), so X5, the redu
tionmod 5 of X , gets a node that is not present in 
hara
teristi
 zero. The smallresolution of the node Y5 has no lifting to 
hara
teristi
 zero, but turns out tobe non-proje
tive.There is another arrangement with Clebs
h 
ubi
 that leads to nonliftable (but12



non-proje
tive) Calabi�Yau manifold in 
hara
teristi
 5.Consider the o
ti
 given in P4 by the following equations
(x3 + y3 + z3 + t3 + u3)xyztu = 0

x + y + z + t + u = 0The 
ubi
 interse
ts planes in 15 lines with equations x + y = z + t = u = 0and then permuting. There are another double lines 
oming from interse
tionof planes x = y = z + t + u = 0. There are ten fourfold points whi
h areinterse
tion of three lines and the 
ubi
, they have 
oordinates (1,−1, 0, 0, 0)and permuted. The resolution 
omes from blowing�up �rst fourfold points andthen 25 double lines. The Euler 
hara
teristi
 of smooth model is 84, the Hodgenumbers h1,1 = 42, h1,2 = 0. We blow-up 35 times so there are 6 skew-symmetri
divisors, they 
ome from 
onta
t planes with equations x + y = z + t + u = 0and symmetri
. In 
hara
teristi
 �ve there is additional node but again we arenot able to �nd a proje
tive small resolution.
6.2 Non�liftable Calabi�Yau spa
es 
oming from �ber prod-u
ts.In this se
tion we shall 
onsider Calabi�Yau spa
es that are 
onstru
ted asdesingularization of �ber produ
ts of semistable, rational ellipti
 surfa
es withse
tion. This 
onstru
tion originally goes ba
k to S
hoen ([19℄). More pre
iselywe 
onsider twisted self-�ber produ
ts of semistable ellipti
 surfa
es with foursingular �bers ([23℄).There are six types of semi-stable rational ellipti
 surfa
es with four singular�bres, the well-known Beauville surfa
es, [3℄. Let S1 and S2 be two su
h surfa
es.Assume that the singular �bers 
orresponds to points 0, 1, λ,∞ and 0, 1, µ,∞,assume that the �bers (S1)λ and (S2)µ have type I1. Then the �ber produ
thas a (non�proje
tive) small resolution whi
h is a rigid Calabi�Yau manifold.Assume that p is a prime number su
h that λ and µ have the same redu
tion mod
p (di�erent from 0 and 1). Then the redu
tion Xp of X mod p has an additionalnode and hen
e its small resolution Yp is a Calabi�Yau spa
e in 
hara
teristi
 pthat has no lifting to 
hara
teristi
 zero.We list some of the surfa
es (the singular �bers and their positions) that weshall use in our 
onstru
tions 13



Twist of S(Γ1(5))

0 1 ∞ 1

2
(55

√
5 − 123)

I5 I1 I5 I1Twists of S(Γ1(6))

0 1 ∞ 8

9

I3 I6 I2 I1

0 1 ∞ 9

I2 I3 I6 I1

0 1 ∞ −8

I3 I2 I6 I1Twists of S(Γ0(8) ∩ Γ1(4))

0 1 ∞ 1

I2 I1 I8 I1

0 1 ∞ 2

I1 I2 I8 I1

0 1 ∞ 1

2

I8 I2 I1 I1A small resolution of the �ber produ
t of �rst two surfa
es is a rigid Calabi�Yaumanifold X with Euler number e(X) = 2(5 × 3 + 5 × 6 + 1 × 6) = 102 and theHodge numbers h11 = 51, h12 = 0. Now,
1

2
(55

√
5 − 123) − 8

9
=

55 × 9
√

5 − (16 + 123 × 9)

18
=

=
−4 × 9001

18(55 × 9
√

5 + (16 + 123 × 9))so the redu
tion X9001 of X modulo 9001 is a rigid Calabi�Yau variety with onenode. Its small resolution Y9001 is a smooth Calabi�Yau spa
e over Z/9001 thatadmits no lifting to 
hara
teristi
 0. 14



Similarly
1

2
(55

√
5 − 123) = 9 in Z/29 and Z/41

1

2
(55

√
5 − 123) = −8 in Z/919

1

2
(55

√
5 − 123) = −1 in Z/11

1

2
(55

√
5 − 123) = 2 in Z/251

8

9
= 9 in Z/73

8

9
= −8 in Z/5

8

9
= −1 in Z/17

8

9
=

1

2
in Z/7

−1 = 2 in Z/3Consequently,we 
an 
onstru
t further non�liftable Calabi�Yau spa
es in 
har-a
teristi
s 3, 5, 7, 11, 17, 29, 41, 73, 251 and 919.Remark 6.1 The same examples of �ber produ
t Calabi�Yau manifolds werestudied by C. S
hoen ([20℄). He proved that they have third Betti number equalzero whi
h implies non�liftability.A
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